Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)

- P. S. Athiray¹, Patrick Champey¹, Amy Winebarger¹, Ken Kobayashi¹, Sabrina Savage¹, Gen Vigil¹, Peter Cheimets², Edward Hertz², Leon Golub²
 - ^{1.} NASA Marshall Space Flight Center (MSFC)
 - ^{2.} Smithsonian Astronomical Observatory (SAO)

Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)

- MaGIXS is a sounding rocket experiment to observe the Sun in Soft X-rays
- Launch Spring 2020

Scientific objective: Constrain the timescales of heating in quiescent active region structures using high temperature spectral lines

Outline

- Scientific motivation for MaGIXS
 - Demonstrate sensitivity of MaGIXS to determine high temperature plasma
- Instrument design
 - Challenges involved
- Instrument status alignment and calibration

MaGIXS – Scientific motivation

Observational Discriminators

Low-frequency heating

- High temperature plasma > 7MK
- Consistent with Reconnection mechanism
- Strong Fe XVII emission and steady Fe XVIII and Fe XIX emission

High-frequency heating

- No high temperature plasma
- Consistent with wave dissipation
- Steady Fe XVII emission and weak Fe XVIII and Fe XIX

MaGIXS – Scientific motivation

- Amount of plasma at temperatures >5MK is not accurately known
- Current space instrumentation has a "blind-spot" for high temperature emission

- Amount of plasma at temperatures >5MK is not accurately known
- Current space instrumentation has a "blind-spot" for high temperature emission

- Amount of plasma at temperatures >5MK is not accurately known
- Current space instrumentation has a "blind-spot" for high temperature emission

MaGIXS is complementary to FOXSI
MaGIXS bridges gap between XRT - FOXSI

MaGIXS	key	spectral	lines
--------	-----	----------	-------

madiko key spectral ililes				
Fe ion	Wavelength (A)	Log Max temperature		
FeXVII	15.01	6.6		
FeXVIII	14.21	6.8		
FeXIX	13.53	6.95		
Ne IX	13.45	6.6		
O VII	21.60	6.3		

- High temperature spectral lines are chiefly observed in Soft X-rays (0.5 to 2 keV)
- The spectral lines are closely spaced and require high resolution X-ray spectrometer
- MaGIXS will observe in this wavelength including important Fe XVII, XVIII and XIX lines, which are diagnostic for high temperature plasma with same optical path

Sensitivity of MaGIXS for high temperature plasma

Can we determine high temperature Emission Measure (EM) slope using MaGIXS line intensity ratio?

- Assumed series of EM distributions with range of α and β
- Predict MaGIXS spectra for different EM distributions
- Investigate MaGIXS line intensity as a function of EM slopes

Athiray et al (to be submitted)

Sensitivity of MaGIXS for high temperature plasma

Athiray et al (to be submitted)

- Selected MaGIXS line intensity is sensitive to β and less sensitive to α
- Ratio between two line intensity from MaGIXS can be used as a proxy to determine β
- The uncertainty in β will be more tightly constrained than has been in previous studies

MaGIXS sounding rocket experiment

GOAL: Constrain the timescales of heating in quiescent active region structures using high temperature spectral lines

- MaGIXS Science and Instrument requirements
 - Energy range 6 to 24Å (0.5 to 2 KeV)
 - Target Medium sized active region
 - Spatial resolution < 5" (coherent structure in AR)
 - Spectral resolution < 0.1Å
 - Relative uncertainty in the MaGIXS response function to contribute <
 10% to the uncertainty of β

Outline

- ✓ Scientific motivation for MaGIXS
 - ✓ Demonstrate sensitivity of MaGIXS to determine high temperature plasma
- Instrument design
 - Challenges involved
- Instrument status alignment and calibration

Telescope

MaGIXS Optics design

- Wolter I type
- Electroformed Nickel
- Focal length = 1090 mm
- Diameter = 150 mm
- Graze angle = 1.0°

Spectrometer system

- Electroformed Nickel finite conjugate mirror pair
- Focal length = 594 mm

Grating and Camera

- Planar varied-line-space grating
- CCD detector: flight heritage system (CLASP, Hi-C)

MaGIXS Instrument design (MSFC, SAO)

Optical path dimensions

MaGIXS will also carry a slit-jaw imaging camera to get context image of the Sun during MaGIXS observation

Challenges Associated with the Optics

Instrument	Energy [keV]	Focal Length [m]	HPD [arcsec]	# Reflections
HEROES	40-60	6	25-30	2
ARC-XC	6-30	2.7	60	2
FOXSI	5-15	2	25-30	2
IXPE	2-8	4.0	≤ 30	2
MaGIXS	0.5-2.0	1.09	6	5

- Short focal length requires steep curvatures more challenging to polish
- Resolution is ~5 times less than nickel-replicated optics produced in the past
- Resolution balanced between 5 successive reflections summed in quadrature
- Co-alignment of single shells in series
 - MSFC has a mature process for coaxial alignment of nested shells
 - SAO and MSFC co-developed method for aligning shells in series

CNC Deterministic polishing

MaGIXS Telescope Mandrel P-Segment: Zeeko Polishing

MaGIXS Mirror Performances

- Performed X-ray tests on shells replicated from CNC polished mandrels at the Stray light facility.
 - o On-axis PSF
 - Through focus PSF
 - De-focus annulus for shell irregularities, scattering

 Working toward establishing an image analysis technique to quantify the improvements achieved through deterministic polishing (Champey et al. in preparation)

Outline

- ✓ Scientific motivation for MaGIXS
 - ✓ Demonstrate sensitivity of MaGIXS to determine high temperature plasma
- ✓ Instrument design
 - ✓ Challenges involved
- Instrument status alignment and calibration

Instrument status

- Internal alignment of Telescope Mirror Assembly completed by SAO
- Internal alignment of Spectrometer Optics Assembly completed at SAO
- Instrument assembly and co-alignment started at MSFC
- Final alignment and calibration in X-ray at the X-ray Cryogenic Facility (XRCF)

Calibration requirements

- 1. We require relative uncertainty in MaGIXS response function to contribute < 10% to the uncertainty of β
- 2. Calibration will take place at MSFC using XRCF facility

Summary

- MaGIXS lines are sensitive to β
- Ratio between two MaGIXS line intensity can be used as a proxy for β,
 which is the "smoking gun" to constrain frequency of heating in ARs
- Technological challenges in MaGIXS is profound and are far-reaching
 - CNC polished optics
 - Alignment and calibration
- Instrument alignment and calibration are in progress for launch in Spring 2020.

